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The matrices for the low-pass pi-network for the empty package
can be represented by the matrix multiplication of the cascaded unit
cells

T. =
10 1 -~ 10

jBb

jBa 1 01 jBa 1 (2)

1 + Ba/Bb –j/B6

= jB,J2 + Ba/Bb) i + B=/Bb

where B. and Bb are the susceptances of CA and LB, respectively.
The matrix for the transmission line can be represented by

TL =
Cos e jzo sin O

j YO sin 8 cos O
(3)

where

e=2Tfm J x = 0.336 in

Yo = 1/20, 20 = 50 s?.

By repeated application of matrix multiplication, the equivalent
circuit for the empty package and the long resonator can be repre-
sented by the A B CD matrix

(4)

The input admittance is

Y=AGL+B

CGL + D
(5)

where GL is the load conductance of the open-circuited transmission
line and was taken to be 0.001 mho. When Y= O, parallel resonance is

achieved.

A digital computer using the Monsanto Company’s Microwave
Circuit Analysis program was used to determine the element values
for the diode package. The procedure consists of selecting values for

CA and LB, then calculating the AB CD matrix, equation (4), and
then solving for the admittance Y equal to zero. An error function
was used to minimize the frequency differences between the mea-
sured and the calculated resonant frequencies. A subroutine prints

out the calculated resonant frequencies and the error function. The

optimized values for LB and CA were 0.52 nH and 0.74 pF, respec.
tively. The experimental and computed circuit model resonances are
tabulated in Table I (b).

The empty package was replaced with an identical package in
which a 6-roil ribbon lead was connected from the top hat to the
pedestal at the base of the package. Wkh the addition of the induc-
tance Lc, the resonances again shifted frequency and a new resonant
frequency occured. A matrix similar to the open-circuited package

case with the same values for LB and CA was used to obtain the opti-
mum lead inductance Lc. The computed value was 0.26 nH. Both

the experimental and computed resonances are shown in Table I (c).
In conclusion, a very simple lumped circuit gave fairly good

agreement. Better results could have been achieved if the parameters
of the pi-network were not invariant with change in measured fre-

quency. The transformation of impedances to the active chip termi-
nals (Fig. 3) now becomes a matter of ordinary RLC network theory.
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The Impedance and Scattering Properties

of a Perfectly Conducting Strip Above

a Plane Surface-Wave System

EDMOND S. GILLESPIE AND FRANCIS J. KILBURG

Abstract—The impedance and scattering properties of a perfectly

conducting strip above a dielectric-coated conducting plane is investi-

gated both theoretically and experimentally. An integral equation
for the induced current is presented and solved numerically using a

point-matching technique. The values of the reflection and transmis-
sion coefficients are calculated from the computed current d&ribu-
tions. The results of the computations are compared to the measured
values and the agreement is quite good. In’ addition the impedance

and fractions of power reflected, radiated, and transmitted are com-
puted and displayed graphically.

I. INTRODUCTION

Whenever an obstacle is placed in the vicinity of an unshielded

surface-wave system, part of the scattered field radiates away from

the surface, part is backscattered in the form of a surface wave, and
the remainder is transmitted in the forward direction also as a surface

wave. The obstacle can be thought of as an antenna fed by a surface-
wave transmission line [1], [2]. It is, therefore, altogether appropri-
ate to characterize the obstacle by the usual parameters from trans-
mission-line theory; namely, by impedance or scattering matrices.
An aspect of this type of scattering problem which has been largely
neglected in the literature is that of the prediction of the fraction of

power lost by radiation.
Gillespie and Gustincic [3], [4] have computed the reflection

coefficients of strips above a dielectric-coated conducting plane and
of plane conducting annuli surrounding a Goubau line. Using results
presented in [4], Gillespie [5] calculated the shunt impedance of
plane annuli on a Goubau line, as well as the fractions of power radi-

ated, reflected, and transmitted. It is the purpose of this short paper
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Fig. 2. Reflection coefficient versus strip width.

to present similar calculations for the case of strips over a dielectric-

coated conducting plane.
To characterize the strips with a reasonable degree of complete-

ness requires that the strips have a range of widths such that the

asymptotic behavior can redetermined. If thesurface-wave parame-
ters usedin [3]arechosen, then strips with widths upto about three
wavelengths are required. Inthe previous strip study data were pre-

sented for strips whose maximum widths were less than one wave-
length; therefore, further calculations of the reflection coefficients for

wider strips are required. As the strip width is increased the compu-
tational time increases quite rapidly. In [3]avariational formulator
the reflection coefficient of the strip was developed, and the Rayleigh-
Ritz technique was applied to obtain approximate values for the
reflection coefficient. It was felt that some reduction in computer

time might result if a more direct numerical approach were used;
therefore, theproblem is reformulated here.

II. DISCUSSION OF THE PROBLEM

Thegeometry of theproblem isshown in Fig. l. Thestrip is per-

fectly conducting and indefinitely thin and is located on arbitrary
height above the dielectric-coated ground plane. The thickness of the

dielectric is adjusted to permit only the lowest order TM surface-
wave mode to propagate. As is well known the field components are

proportional to exp (—aoy —jBoz) where aO is the attenuation con-

stant for the ydkection and60is the propagation constant for thez
direction.

The incident surface wave induces an electric current on the sur-

face of the strip, which is only y directed. This current radiates a
scattered field, part of which is backscattered asa surface wave, part
is forward scattered also asa surface wave, and the remainder of the

field is in the form of radiation away from the surface-wave system.
The surface-wave components of the scattered field can be related to

theincident field byreflection andtransmission coefficients rand T,
respectively, that is

(1)

and

(Ev’)sw+ ~= TEvi (2)
Z=o

in wldch Ev; represents the transverse component of the incident sur-

face wave, (&”),W- that of the reflected surface wave, and @4’),w+
that of the transmitted surface wave. Since the strip is assumed to be

indefinitely thin its scattered field will be symmetrical about the
z=O plane. The total surface-wave field in thez>O region being the



SHORT PAPERS 41.5

1.C

J

J

~ .5

.3

,1

0

-n

kOh = 0.60

N=193

-n12 - I I I I 1+
o 3“ 6 9 12 15

–n

lhOh= 2.51

N=70

.7r/2 I I I I

o 3 6 9 12 15

-n

kOh = 5.02

N=70

–n12
o 3 6 9 12

STRIP WIDTH (kOW)

O MEASURED

— COMPUTEO

Fig.3. Thephase angle of thereflection coefficient versrrs strip width.

N=70

k~ = 5.02

N=70

k~ = 2.51

I I i I 1 I I 1
1 3 s 7 9 11 13 15

sum of the incident and scattered fields is given by

kow

Fig.4. Transmission coefficient versus strip width.

(4)

(E,”)m+ + = (1 +- rj~v’. where Zis the normalized shunt impedance. Finally, the fraction of
s-o

power radiated is given by

A comparison with (2) reveals that S=l– IT*–TT* (5)

T=l+r. (3) in which rr*, TT*, and .S represent the fraction of power reflected,

transmitted, and radiated, respectively [5]. Thus, if the reflection

Thenormalized impedance of thestripis given by [5] coefficient is determined, that result can be used to compute the
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Fig,5. Phase angle oftransmission coefficient versus strip width.

Fig.6. Impedance versus strip width forkdt= 0.5,2 .51,5.02.

transmission coefficient, the shunt impedance, and the fractions of dielectric, and kO and co are the free space-wave number and permit-
power reflected, transmitted, and radiated. tivity, respectively.

In [3] it was shown that the reflection coefficient for the strip can The problem then is the determination of the unknown current

be calculated once the induced current .T(y’) on the strip is known by .T(Y’). Once this is done the reflection coefficient can be obtained by

use of use of (6); the transmission coefficient and shunt impedance are ob-

Roflo

J

tained through the use of (3) and (4). ,
r=—

Z1.oeo
e–~o~’~(y’) dy (6)

STRIP III. DETERMINATION OF THE INDUCED CURRENT

where Ro is given by An appropriate integral equation from which the unknown cur-

– Zff,
rent can be determined is given by [7]

Ro =
1 – CYOIKCYO+ t(K2 – 1) + t(K – WO2]/K[(K – l)ko2 – aoz]

_8-.0V + A’ sin kOy + B’ cos koy =
f

G(y I y’)~’(y’) dy’ (7)
STRIP

and t is the thickness of the dielectric, u is the angular frequency of in which the current has been scaled. The constants A and B are to be

the incident surface wave, K is the relative dielectric constant of the determined by the edge conditions; namely, that the currents vanish
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atthetop and bottom edge of thestrip. Gustincic [3]has shown that
for the plane z= O the Green’s f unction can be approximated by

G(y I y’) = – ~(#o/4) {~o(’)(ko IY – Y’ I)
+ [(j<Z+tan &kd)/(~ti – tan @kOt)]IZ~@J(k~(y + y’))] (8)

in which I-I$z) (kO[ y —y’ ] ) is the zeroth order Hankel function of the

second Hind, provided that the incident surface wave is lightly
trapped; that is, <K — 1kot<<(rr/2) where t is the thickness of the
dielectric. This approximation has been shown [6] to be highly
accurate for heights such that IzOh>0.5. The integral contained in (7)

can be approximated by a summation. This is accomplished by di-

viding the strip into N equal intervals. This procedure yields a system

of N equations, of which the ~th one is given by

_Ei + A’Sj + B’Cj = A $ GiAJ~ (9)
i-l

where A is the width of the interval, the J index is associated with the
field position Y, and i with the source position Y’. In (9) E;, .S;. and

<j represent the exponential function, &ne func~on, and’ co&e- func-
tlon, respectively.

There is the additional requirement that the current be zero at
the edges of the strip. This condition can be imposed by properly
choosing A‘ and B’. To do this, set -71 and -7N equal to zero, then let

~.= 1 and i = N. -4’ and B’ can be determined by the simultaneous SOIW
tlon of these two equations. When these results are substituted into
(9) the~th equation of the system of equations can be written as

D{ (131CN – lLvCI)S~ – (flISN – ~NSl)Cj} – IZj

N-1

a A z {Gjj – ~[(cNG’It –– c,GNi)& – (SNGli – .$lGNi)Ci])~i’ (10)
i=a

where the i =1, h’ terms have been dropped since JI ‘ji.i = O.
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One difficulty remains, namely, thesingularity that occurs when

Y= Y’. It is the Hankel function Ho@l(ko IY-Y’1) that contains the
singularity. The procedure used is as fbilo&.” In the vicinity of

Y= Y’, the Hankel function is replaced by its small argument form
which is integrable, and its average value over the interval is taken.

This procedure yields

in which -y is Euler’s constant and the bar represents ‘{the average

value of. ” The unknown current distribution can now be determined
by the inversion of (10). Whenever i =j, (11) is used instead of the
Hankel function. The Gauss–Jordon technique was used to solve this

system of equations.

IV. RESULTS

The parameters of the surface-wave system used for the computa-
tion and experiment are: the thickness of the dielectric, kot = 0.312;

attenuation constant, (crolko) = O.188; and the dielectric constant,

K =2.54. The experimental apparatus was designed to operate at
9.375 GHz. Typical computed and measured values of the magnitude
and phase angle of the reflection coefficients for strips of various
widths and heights above the surface-wave system are displayed
graphically in Figs. 2–3. The experimental values were obtained from
measurements made with the use of the apparatus described in de-
tail in [3].

An examination of the computed values shown in Fig. 2 reveals,
not surprisingly, that for a given strip width the closer the strip is to
the dielectric surface the more increments that are required for the
numerical solution. For example, notice that for kok = 2.51 and

koh = 5.02 the strip was divided into 70 increments. Excellent cor-
respondence between calculated and measured values for strip widths

over the full range of values considered was obtained when k~h = 5.02.
Note, however, that when the height is lowered to koh = 2.51 a signifi-

cant deviation from the experimental values is noted when k~w >13.5.
Although not shown, the calculated data began to deviate from the
measured data for k~h = 0,5 when kow was only equal to 3. When N

was increased to 150 the correspondence was good up to k~w = 8, as
can be seen from Fig. 2. Even so, in the latter case the deviation from
the experiment is only eight percent for widths up to kow = 15.

The transmission coefficient can be computed with the use of (3).

The results are shown in Figs. 4 and 5. The normalized impedance is

computed with the use of (4). These results are shown in Fig. 6. Note

that the real part of the impedance for each case considered remains

very nearly constant as the strip width is varied. Furthermore, once

the width reaches a certain value the impedance stays fairly constant
thereafter, with the impedance curve forming loops about a constant

value. Also, the impedance is always capacitive as one might expect.
The computed fractions of power reflected, radiated, and trans-

mitted are displayed in Figs. 7–9. Notice that as a strip of a given
width is moved away from the surface, that is, as &Jz increases, the
fraction of reflected power decreases and that of the transmitted

power increases, both in a seemingly monotonic fashion. The fraction
of radiated power, on the other hand, first increases then decreases,
giving rise to a pronounced maximum at a critical height. This was

investigated by computing the fraction of power radiated as a func-

tion of height with the width as a parameter. The results are shown

in Fig. 10. Sketched in that figure is the locus of the maxima. Note

that for narrow strips the maxima occur at a height very nearly one-
half wavelength, whereas for wide strips the maxima occur at heights

that are closer to one-quarter wavelength. Note the smooth transi-
tion in the heights where the maxima occur as the strip widths vary
from narrow to wide.

Another striking feature of the results is that the maxima never

exceed 0.5, although they do tend to approach that value for wider
strips. While no formal proof is given it does appear that the maxi-
mum fraction of radiated power of a conducting strip might be 0.5.
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Experimental Gain and Noise Parameters of Microwave

GaAs FET’s in the L and S Bands

A. ANASTASSIOU AND M. J. O. STRUTT

Abstract—The design of microwave ssnpfifiers with GaAs FET’s
assumes the knowledge of the four gain and the four noise parame-
ters as a function of the biasing conditions. The gain parameters
at three different bias conditions have been calculated by computer
from the measured scattering parameters. The noise figures as a
function of the same bias conditions have also been measured. The

four fundamental noise parameters have been determined. The GaAs
FET% are units from Plessey (England). At present, these are the

only units which are commercially available.

1. GAIN PARAMETERS

The available gain of a two-port as a function of the four gain
parameters is given by

1
-— . J-+ ~+~,G G... , . [(u. - u.,)’ + (v. - v..)’] (1)

a“

where G@,. is the maximum available gain of the two-port, r.~ = U.*
+jl’.. the optimum complex source reflection coefficient with respect

to gain, Q, a factor which indicates the dependence of the available
gain on the complex source reflection coefficient, and r.= U,+jV. the
complex reflection coefficient of the source.

The four gain parameters as a function of the scattering parame-
ters, which are determined in [2], are given by

_ /s2,1
G,. - ~-JK - v’K’ - 1) (2)

Q+
+!s,,l’– IA12

/s2, [’ ‘

A = -$u.rn – S21 S12 (3)
.“0

(4)

v.. = (-:2:, . (5)

Here, K is the stab:lity factor. If K> 1, the two-port is uncondition-
ally stable and the gain parameters are given by (2)–(5). If K <1, the
two-port is conditionally stable and the available gain becomes equal

to the maximum stable gain (MSG):

I$’21IMSG = —— .
I$,2!

(6)
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