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The matrices for the low-pass pi-network for the empty package
can be represented by the matrix multiplication of the cascaded unit
cells

1
T, = 1 0 1 ;B—b 1 0
/B 1o t [|jB, 1 @
_[ 14 B./By —j/By
" | /B2 + Ba/By) 1+ Bu/By

where B, and By are the susceptances of C4 and Lp, respectively.
The matrix for the transmission line can be represented by

[/ /%0 Sin @
T, = (.:os ' 770 sin )
j¥osind cosd
where
* .
6 =2r—, x = 0.336in
Yo =1/2, z0 =500

By repeated application of matrix multiplication, the equivalent
circuit for the empty package and the long resonator can be repre-
sented by the 4 BCD matrix

4 B
EANEAIEA R E] ®
The input admittance is
AGL+ B
T CGL+D ®

where Gy is the load conductance of the open-circuited transmission
line and was taken to be 0.001 mho. When ¥ =0, parallel resonance is
achieved.

A digital computer using the Monsanto Company’s Microwave
Circuit Analysis program was used to determine the element values
for the diode package. The procedure consists of selecting values for
Ca and Lp, then calculating the ABCD matrix, equation (4), and
then solving for the admittance ¥ equal to zero. An error function
was used to minimize the frequency differences between the mea-
sured and the calculated resonant frequencies. A subroutine prints
out the calculated resonant frequencies and the error function. The
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optimized values for Lp and C4 were 0.52 nH and 0.74 pF, respec-
tively. The experimental and computed circuit model resonances are
tabulated in Table I (b).

The empty package was replaced with an identical package in
which a 6-mil ribbon lead was connected from the top hat to the
pedestal at the base of the package. With the addition of the induc-
tance L, the resonances again shifted frequency and a new resonant
frequency occured. A matrix similar to the open-circuited package
case with the same values for Lp and C4 was used to obtain the opti-
mum lead inductance Le. The computed value was 0.26 nH. Both
the experimental and computed resonances are shown in Table I (c).

In conclusion, a very simple lumped circuit gave fairly good
agreement. Better results could have been achieved if the parameters
of the pi-network were not invariant with change in measured fre-
quency. The transformation of impedances to the active chip termi-
nals (Fig. 3) now becomes a matter of ordinary RLC network theory.
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The Impedance and Scattering Properties
of a Perfectly Conducting Strip Above
a Plane Surface-Wave System

EDMOND S. GILLESPIE axp FRANCIS J. KILBURG

Abstract—=The impedance and scattering properties of a perfectly
conducting strip above a dielectric~coated conducting plane is investi-
gated both theoretically and experimentally. An integral equation
for the induced current is presented and solved numerically using a
point-matching technique. The values of the reflection and transmis-~
sion coefficients are calculated from the computed current distribu-
tions. The results of the computations are compared to the measured
values and the agreement is quite good. In'addition the impedance
and fractions of power reflected, radiated, and transmitted are com-
puted and displayed graphically.

I. INTRODUCTION

Whenever an obstacle is placed in the vicinity of an unshielded
surface-wave system, part of the scattered field radiates away from
the surface, part is backscattered in the form of a surface wave, and
the remainder is transmitted in the forward direction also as a surface
wave. The obstacle can be thought of as an antenna fed by a surface-
wave transmission line [1], [2]. It is, therefore, altogether appropri-
ate to characterize the obstacle by the usual parameters from trans-
mission-line theory; namely, by impedance or scattering matrices.
An aspect of this type of scattering problem which has been largely
neglected in the literature is that of the prediction of the fraction of
power lost by radiation.

Gillespie and Gustincic [3], [4] have computed the reflection
coefficients of strips above a dielectric-coated conducting plane and
of plane conducting annuli surrounding a Goubau line. Using results
presented in [4], Gillespie [5] calculated the shunt impedance of
plane annuli on a Goubau line, as well as the fractions of power radi-
ated, reflected, and transmitted. It is the purpose of this short paper
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Geometry of the problem.
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Fig. 2.

to present similar calculations for the case of strips over a dielectric-
coated conducting plane.

To characterize the strips with a reasonable degree of complete-
ness requires that the strips have a range of widths such that the
asymptotic behavior can be determined. If the surface-wave parame-
ters used in [3] are chosen, then strips with widths up to about three
wavelengths are required. In the previous strip study data were pre-
sented for strips whose maximum widths were less than one wave-
length; therefore, further calculations of the reflection coefficients for
wider strips are required. As the strip width is increased the compu-
tational time increases quite rapidly. In [3] a variational formula for
the reflection coefficient of the strip was developed, and the Rayleigh—
Ritz technique was applied to obtain approximate values for the
reflection coefficient. It was felt that some reduction in computer
time might result if a more direct numerical approach were used;
therefore, the problem is reformulated here.

II. DiscussION OF THE PROBLEM

The geometry of the problem is shown in Fig. 1. The strip is per-
fectly conducting and indefinitely thin and is located on arbitrary
height above the dielectric-coated ground plane. The thickness of the
dielectric is adjusted to permit only the lowest order TM surface-
wave mode to propagate. As is well known the field components are

Reflection coefficient versus strip width.

proportional to exp (—aey—jBez) where ao is the attenuation con-
stant for the y direction and B is the propagation constant for the 2
direction.

The incident surface wave induces an electric current on the sur-
face of the strip, which is only y directed. This current radiates a
scattered field, part of which is backscattered as a surface wave, part
is forward scattered also as a surface wave, and the remainder of the
field is in the form of radiation away from the surface-wave system.
The surface-wave components of the scattered field can be related to
the incident field by reflection and transmission coefficients I' and T,
respectively, that is
(¢Y]

(Eya) A _= I‘Eui

2=0

and

(Eva)sw"' + = TEv‘ (2)

2=0

in which E,? represents the transverse component of the incident sur-
face wave, (E,*)sw  that of the reflected surface wave, and (E,*)sw®
that of the transmitted surface wave. Since the strip is assumed to be
indefinitely thin its scattered field will be symmetrical about the
2=0 plane. The total surface-wave field in the >0 region being the
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Fig. 4. Transmission coefficient versus strip width.

sum of the incident and scattered fields is given by

(B awt i (A + D)ES.
z=0
" A comparison with (2) reveals that
T'=1+T.

The normalized impedance of the strip is given by {5]

14T

7=
r
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@

where Z is the normalized shunt impedance. Finally, the fraction of

power radiated is given by
S=1—-rIr*-71T*

&)

@) in which I'T*, TT*, and S represent the fraction of power reﬂectfad,
transmitted, and radiated, respectively [5]. Thus, if the reflection
coefficient is determined, that result can be used to compute the
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transmission coefficient, the shunt impedance, and the fractions of
power reflected, transmitted, and radiated.

In [3]it was shown that the reflection coefficient for the strip can
be calculated once the induced current J(y') on the strip is known by
use of

r= RofBo

2weq

[ sy ©
STRIP

where R, is given by
_ —2ae
1- ao[Kao 1 — 1) + e — DE2]/c[(x — 1)ke? — aoz]

and ¢ is the thickness of the dielectric, w is the angular frequency of
the incident surface wave, « is the relative dielectric constant of the

Ro

: koh = 5.02 o

Impedance versus strip width for k% =0.5, 2.51, 5.02,

dielectric, and %o and ¢ are the free space-wave number and permit-
tivity, respectively.

The problem then is the determination of the unknown current
J (). Once this is done the reflection coefficient can be obtained by
use of (6); the transmission coefficient and shunt impedance are ob-
tained through the use of (3) and (4). ,

III. DETERMINATION OF THE INDUCED CURRENT

An appropriate integral equation from which the unknown cur-
rent can be determined is given by [7]

—e¢ew + A’ sin key + B cos by = f s—meG(yl YT dy (D)

in which the current has been scaled. The constants 4 and B are to be
determined by the edge conditions; namely, that the currents vanish
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at the top and bottom edge of the strip. Gustincic [3] has shown that
for the plane z =0 the Green’s function can be approximated by

G| y) =~ — j(uo/D{H® ko] vy — ¥ |)
+ [V + tan v/k ko) /(jo/x — tan +/K ket) [ Ho® (ko(y + 7))} (8)

in which Ho® (ko|y—9']) is the zeroth order Hankel function of the
second kind, provided that the incident surface wave is lightly
trapped; that is, 4/ — 1ko¢<K(x/2) where ¢ is the thickness of the
dielectric. This approximation has been shown [6] to be highly
accurate for heights such that ko% >0.5. The integral contained in (7)
can be approximated by a summation. This is accomplished by di-
viding the strip into N equal intervals. This procedure yields a system
of N equations, of which the jth one is given by

N
—E;+ A'S; + B'C; = A2 GiiJ! )

toml

8 10 12 14 15

Fraction of power radiated, reflected, and transmitted versus strip width for koh =2,51,

where A is the width of the interval, the § index is associated with the
field position ¥, and ¢ with the source position ¥'. In (9) E;, S;, and
C; represent the exponential function, sine function, and cosine func-
tion, respectively.

There is the additional requirement that the current be zero at
the edges of the strip. This condition can be imposed by properly
choosing A’ and B’. To do this, set J; and Jy equal to zero, then let
7=1and j=N. A’ and B' can be determined by the simultaneous solu-
tion of these two equations. When these results are substituted into
(9) the jth equation of the system of equations can be written as

D{(ECx — EnC)S, — (E:Sy — ExS0)Ci} — Ey
N-1
=A X {Gji — D[(CxGi — CiGn9)S; — (SnGui — SIGWICi]}T¢ (10)

$=2

where the 7=1, N terms have been dropped since J;=jn=0.
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One difficulty remains, namely, the singularity that occurs when
y=y". It is the Hankel function Ho® (ke|y—73'[) that contains the
singularity. The procedure used is as follows. In the vicinity of
¥=29', the Hankel function is replaced by its small argument form
which is integrable, and its average value over the interval is taken.
This procedure yields

_— 2 A
Ho<2><ko;y—y'|>z1~j—§lnz—1+ln——§ (1)
T 2 2

in which v is Euler’s constant and the bar represents “the average
value of.” The unknown current distribution can now be determined
by the inversion of (10). Whenever <=3, (11) is used instead of the
Hankel function. The Gauss-Jordon technique was used to solve this
system of equations.

IV. ResuLts

The parameters of the surface-wave system used for the computa-
tion and experiment are: the thickness of the dielectric, kot =0.312;
attenuation constant, (ao/ko)=0.188; and the dielectric constant,
k=254, The experimental apparatus was designed to operate at
9.375 GHz. Typical computed and measured values of the magnitude
and phase angle of the reflection coefficients for strips of various
widths and heights above the surface-wave system are displayed
graphically in Figs. 2-3. The experimental values were obtained from
measurements made with the use of the apparatus described in de-
tail in [3].

An examination of the computed values shown in Fig. 2 reveals,
not surprisingly, that for a given strip width the closer the strip is to
the dielectric surface the more increments that are required for the
numerical solution. For example, notice that for k¢k=2.51 and
koh=5.02 the strip was divided into 70 increments. Excellent cor-
respondence between calculated and measured values for strip widths
over the full range of values considered was obtained when koh =5.02.
Note, however, that when the height is lowered to kek =2.51 a signifi-
cant deviation from the experimental values is noted when kew >13.5.
Although not shown, the calculated data began to deviate from the
measured data for kek =0.5 when kgw was only equal to 3. When N
was increased to 150 the correspondence was good up to kow =38, as
can be seen from Fig. 2. Even so, in the latter case the deviation from
the experiment is only eight percent for widths up to kew=15.

The transmission coefficient can be computed with the use of (3).
The results are shown in Figs. 4 and 5. The normalized impedance is
computed with the use of (4). These results are shown in Fig. 6. Note
that the real part of the impedance for each case considered remains
very nearly constant as the strip width is varied. Furthermore, once
the width reaches a certain value the impedance stays fairly constant
thereafter, with the impedance curve forming loops about a constant
value. Also, the impedance is always capacitive as one might expect.

The computed fractions of power reflected, radiated, and trans-
mitted are displayed in Figs. 7-9. Notice that as a strip of a given
width is moved away from the surface, that is, as k% increases, the
fraction of reflected power decreases and that of the transmitted
power increases, both in a seemingly monotonic fashion. The fraction
of radiated power, on the other hand, first increases then decreases,
giving rise to a pronounced maximum at a critical height. This was
investigated by computing the fraction of power radiated as a func-
tion of height with the width as a parameter. The results are shown
in Fig. 10. Sketched in that figure is the locus of the maxima. Note
that for narrow strips the maxima occur at a height very nearly one-
half wavelength, whereas for wide strips the maxima occur at heights
that are closer to one-quarter wavelength. Note the smooth transi-
tion in the heights where the maxima occur as the strip widths vary
from narrow to wide. .

Another striking feature of the results is that the maxima never
exceed 0.5, although they do tend to approach that value for wider
strips. While no formal proof is given it does appear that the maxi-
mum fraction of radiated power of a conducting strip might be 0.5.

ACKNOWLEDGMENT

The authors wish to thank V. P. Cable for making the measure-
ments presented herein.

REFERENCES

[1] R, S. Elliott and E. N. Rodda, “Parasitic arrays excited by surface waves,”
IRE Trans. Antennas Propagat,, vol. AP-3, pp. 140-142, July 1955,

419

[2] J. W. Duncan and R. H. DuHamel, “A technique for controlling the radiation
from dielectric rod waveguides,” IJEEE Trans. Antennas Propagat., vol. AP-5,
pp. 284-289, July 1957.

[3] E. S. Gillespie and J. J. Gustincic, “The scattering of a TM surface wave by a
perfectly conducting strip,” IEEE Trans. Microwave Theory Tech. (Special Issue
on Microwave Filters), vol. MTT-13, pp. 630-640, Sept. 1965.

—— “The scattering of an axial cylindrical surface wave by a perfectly conduct-
ing plane annulus,” IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp.
334-341, June 1968,

I5] E. S. Gillespie, “The impedance and scattering properties of a plane annulus
surrounding a Goubau line,” TEEE Trans. Microwave Theory Tech. (Corresp.),
vol. MTT-19, pp. 837-839, Oct. 1971.

[6] E.S, Gillespie and J. J. Gustincic, “The scattering of a plane wave by a perfectly
conducting strip,” Dep. Eng., Univ. of California, Los Angeles, Rep. 64-56, 1964.

[71 F. J. Kilburg, “The impedance and scattering properties of a perfectly conduct-
ing strip above a plane surface wave system,” Master’s thesis, California State
Univ., Northridge, 1972,

4]

Experimental Gain and Noise Parameters of Microwave
GaAs FET’s in the L and S Bands

A. ANASTASSIOU anp M. J. O. STRUTT

Abstract-—The design of microwave amplifiers with GaAs FET’s
assumes the knowledge of the four gain and the four noise parame-
ters as a function of the biasing conditions. The gain parameters
at three different bias conditions have been calculated by computer
from the measured scattering parameters. The noise figures as a
function of the same bias conditions have also been measured. The
four fundamental noise parameters have been determined. The GaAs
FET’s are units from Plessey (England). At present, these are the
only units which are commercially available.

1. GAIN PARAMETERS

The available gain of a two-port as a function of the four gain
parameters is given by

1 1 Qq
+ 1—-Uz—~7g2

—_— 2 — 2
TG Uog)? + (Vo = Vap)?] (1)

[(Us -

where Gav, is the maximum available gain of the two-port, 7oy = Usy
47V, the optimum complex source reflection coefficient with respect
to gain, Q, a factor which indicates the dependence of the available
gain on the complex source reflection coefficient, and 7= Us+;V, the
complex reflection coefficient of the source.

The four gain parameters as a function of the scattering parame-
ters, which are determined in [2], are given by

| su

oo = T2 (K = VD) @
Q”=E1‘VZ+J xulw_.L;ILAP, A=susm—susa @
U, = _Ifz_el(%’ C=su=su' A @

Vg = T‘;I—“[’—(gl : )

Here, K is the stability factor. If K >1, the two-port is uncondition-
ally stable and the gain parameters are given by (2)—(5). If K <1, the
two-port is conditionally stable and the available gain becomes equal
to the maximum stable gain (MSG):

wisG = 12 ©
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